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1. Introduction

The aim of these pages is to give a brief, self-contained introduction to
that part of Geometric Measure Theory which is more directly related to the
Calculus of Variations, namely the theory of currents and its applications to
the solution of Plateau problem. (The theory of ¯nite perimeter sets, which is
closely related to currents and to the Plateau problem, is treated in the article
\Free interfaces and free discontinuities: variational problems").

Named after the belgian physicist J.A.F. Plateau (1801-1883), this problem
was originally formulated as follows: ¯nd the surface of minimal area spanning
a given curve in the space. Nowadays, it is mostly intended in the sense of
developing a mathematical framework where the existence ofk-dimensional
surfaces of minimal volume that span a prescribed boundary can be rigorously
proved. Indeed, several solutions have been proposed in the last century, none
of which is completely satisfactory.

One di±culty is that the in¯mum of the area among all smooth surfaces
with a certain boundary may not be attained. More precisely, it may happen
that all minimizing sequences (that is, sequences of smooth surfaces whose area
approaches the in¯mum) converge to a singular surface. Therefore one is forced
to consider a larger class of admissible surfaces than just smooth ones (in fact,
one might want to do this also for modelling reasons|this is indeed the case
with soap ¯lms, soap bubbles, and other capillarity problems). But what does
it mean that a set \spans" a given curve? and what should we intend by area
of a set which is not a smooth surface?

The theory of integral currents developed by H. Federer and W.H. Fleming
[4] provides a class of generalized (oriented) surfaces with well-de¯ned notions
of boundary and area (called mass) where the existence of minimizers can
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be proved by direct methods. More precisely, this class is large enough to
have good compactness properties with respect to a topology that makes the
mass a lower semicontinuous functional. This approach turned out to be quite
powerful and °exible, and in the last decade the theory of currents has found
applications in several di®erent areas, from dynamical systems (in particular,
Mather theory), the theory of foliations, to optimal transport problems.

2. Hausdor® measures, dimension, and recti¯ability

The volume of a smoothd-dimensional surface inRn is usually de¯ned using
parametrizations by subsets ofRd. The notion of Hausdor® measure allows to
compute the d-dimensional volume using coverings instead of parametrizations,
and, what is more important, applies to all sets in Rn , and makes sense even
if d is not integer. Attached to Hausdor® measure is the notion of Hausdor®
dimension. Again, it can be de¯ned for all sets inRn and is not necessarily
integer. The last fundamental notion is recti¯ability: k-recti¯able sets can be
roughly understood as the largest class ofk-dimensional sets for which it is still
possible to de¯ne ak-dimensional tangent bundle, even if only in a very weak
sense. They are essential to the construction of integral currents.

2.1. Hausdorff measure. - Let d ¸ 0 be a positive real number. Given
a set E in Rn , for every ± > 0 we set

� d
± (E ) :=

! d

2d inf
½X

j

(diam(E j ))d
¾

; (1)

where ! d is the d-dimensional volume of the unit ball in Rd wheneverd is an
integer (there is no canonical choice for! d whend is not an integer; a convenient
one is! d = 2 d), and the in¯mum is taken over all countable families of setsf E j g
that cover E and whose diameters satisfy diam(E j ) · ±. The d-dimensional
Hausdor® measureof E is

� d(E ) := lim
±! 0

� d
± (E ) (2)

(the limit exists because
� d

± (E ) is decreasing in±).

Remarks. - (i)
� d is called d-dimensional because of its scaling behaviour:

if E ¸ is a copy ofE scaled homothetically by a factor ¸ , then

� d(E ¸ ) = ¸ d � d(E ) :

Thus
� 1 scales like the length,

� 2 scales like the area, and so on.
(ii) The measure

� d is clearly invariant under rigid motions (translations
and rotations). This implies that

� d agrees onRd with the Lebesgue measure
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up to some constant factor; the renormalization constant! d=2d in (1) makes
this factor equal to 1. Thus

� d(E ) agrees with the usuald-dimensional volume
for every set E in Rd, and the area formula (x2.6) shows that the same is true
if E is (a subset of) ad-dimensional surface of classC1 in Rn .

(iii) Besides Hausdor® measure, there are several other, less popular notions
of d-dimensional measure: all of them are invariant under rigid motion, scale
in the expected way, and agree with

� d for sets contained in Rd or in a d-
dimensional surface of classC1, and yet they di®er for other sets (for further
details, see [3], Section 2.10).

(iv) The de¯nition of
� d(E ) uses only the notion of diameter, and therefore

makes sense whenE is a subset of an arbitrary metric space. Note that
� d(E )

depends only on the restriction of the metric to E , and not on the ambient
space.

(v) The measure
� d is countably additive on the ¾-algebra of Borel sets in

Rn , but not on all sets; to avoid pathological situations, we shall always assume
that sets and maps are Borel measurable.

2.2. Hausdorff dimension. - According to intuition, the length of a
surface should be in¯nite, while the area of a curve should be null. These are
indeed particular cases of the following implications:

� d(E ) > 0 )
� d0

(E ) = 1 for d0 < d ,
� d(E ) < 1 )

� d0
(E ) = 0 for d0 > d .

Hence the in¯mum of all d such that
� d(E ) = 0 and the supremum of all d

such that
� d(E ) = 1 coincide. This number is calledHausdor® dimension

of E , and denoted by dimH (E ). For surfaces of classC1, the notion of Haus-
dor® dimension agrees with the usual one. Example of sets with non-integral
dimension are described inx2.3.

Remarks. - (i) Note that
� d(E ) may be 0 or 1 even for d = dim H (E ).

(ii) The Hausdor® dimension of a setE is strictly related to the metric on E,
and not just to the topology. Indeed, it is preserved under di®eomorphisms but
not under homeomorphisms, and it does not always agree with the topological
dimension. For instance, the Hausdor® dimension of the graph of a continuous
function f : R ! R can be any number between 1 and 2 (included).

(iii) For non-smooth sets, the Hausdor® dimension does not always conform
to intuition: for example, the dimension of a cartesian productE £ F of compact
sets does not agree in general with the sum of the dimensions ofE and F .

(iv) There are many other notions of dimension besides Hausdor® and topo-
logical one. Among these, packing dimension and box-counting dimension have
interesting applications (see [2], Chapters 3,4).

2.3. Self-similar fractals. - Interesting examples of sets with non-
integral dimension are self-similar fractals. We present here a simpli¯ed version
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of a construction due to J.E. Hutchinson (see [2], chapter 9). Letf ª i g be a
¯nite set of similitudes of Rn with scaling factor ¸ i < 1, and assume that there
exists a bounded open setV such that the sets Vi := ª i (V ) are pairwise dis-
joint and contained in V . The self-similar fractal associated with the system
f ª i g is the compact setC which satis¯es

C =
[

i

ª i (C) : (3)

The term \self-similar" follows by the fact that C can be written as union
of scaled copies of itself. The existence (and uniqueness) of suchC follows
by a standard ¯xed-point argument applied to the map C 7! [ ª i (C). The
dimension d of C is the unique solution of the equation

X

i

¸ d
i = 1 : (4)

Formula (4) can be easily justi¯ed: if the sets ª i (C) are disjoint|and the
assumption onV implies that this almost the case|then (3) implies

� d(C) =P
� d(ª i (C)) =

P
¸ d

i
� d(C), and therefore

� d(C) can be positive and ¯nite
if and only if d satis¯es (4).

An example of this constructions is the usual Cantor set inR, which is given
by the similitudes ª 1(x) := 1

3 x and ª 2(x) := 2
3 + 1

3 x; by (4), its dimension is
d = log 2=log 3. Other examples are described in Figures 1{3.

V

V1 V2

V3 V4

C1

l

Fig. 1. The maps ª i , i = 1 ; : : : ; 4, takes the squareV into the squaresVi at the corners of
V . The scaling factor is ¸ for all i , hence dimH (C) = log 4=(¡ log ¸ ). Note that dim H (C)
can be any number between 0 and 2, including 1.

V

V1 V2 V3

C

....

Fig. 2. A self-similar fractal with more complicated topology. The scaling factor is 1=4 for
all twelve similitudes, hence dimH (C) = log 12=log 4.
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V
V1

V2 V3 V4

C

Fig. 3. The von Koch curve (or snow°ake). The scaling factor is 1=3 for all four similitudes,
hence dimH (C) = log 4=log 3.

2.4. Rectifiable sets. - Given an integer k = 1 ; : : : ; n, we say that a set
E in Rn is k-recti¯able if it can be covered by a countable family of setsf Sj g
such that S0 is

� k -negligible (that is,
� k (S0) = 0) and Sj is a k-dimensional

surface of classC1 for j = 1 ; 2; : : : Note that dim H (E ) · k because eachSj

has dimensionk.
A k-recti¯able set E bears little resemblance to smooth surfaces (it can be

everywhere dense!), but it still admits a suitably weak notion oftangent bundle.
More precisely, it is possible to associate with everyx 2 E a k-dimensional
subspace ofRn , denoted by Tan(E; x ), so that for every k-dimensional surface
S of classC1 in Rn there holds

Tan(E; x ) = Tan( S; x) for
� k -a.e. x 2 E \ S, (5)

where Tan(S; x) is the tangent space toS at x according to the usual de¯nition.
It is not di±cult to see that Tan( E; x ) is uniquely determined by (5) up to

an
� k -negligible amount of points x 2 E, and if E is a surface of classC1,

then it agrees with the usual tangent space for
� k -almost all points of E .

Remarks. - (i) In the original de¯nition of recti¯ability, the sets Sj with
j > 0 are Lipschitz images ofRk , that is, Sj := f j (Rk ) where f j : Rk ! Rn is
a Lipschitz map. It can be shown that this de¯nition is equivalent to the one
above.

(ii) The construction of the tangent bundle is straightforward: Let f Sj g
be a covering ofE as in x2.4, and set Tan(E; x ) := Tan( Sj ; x) where j is the
smallest positive integer such thatx 2 Sj . Then (5) is an immediate corollary
of the following lemma: if S and S0 are k-dimensional surfaces of classC1 in
Rn , then Tan(S; x) = Tan( S0; x) for

� k -almost every x 2 S \ S0.
(iii) A set E in Rn is calledpurely k-unrecti¯able if it contains no k-recti¯able

subset with positive k-dimensional measure, or, equivalently, if
� k (E \ S) = 0

for every k-dimensional surfaceS of class C1. For instance, every product
E := E1 £ E2 where E1 and E2 are

� 1-negligible sets in R is a purely 1-
unrecti¯able set in R2 (it su±ces to show that

� 1(E \ S) = 0 whenever S is
the graph of a function f : R ! R of classC1, and this follows by the usual
formula for the length of the graph). Note that the Hausdor® dimension of
such product sets can be any number between 0 and 2, hence recti¯ability is
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not related to dimension. The self-similar fractals described in Figures 1 and
3 are both purely 1-unrecti¯able.

2.5. Rectifiable sets with finite measure. - If E is a k-recti¯able
set with ¯nite (or locally ¯nite) k-dimensional measure, then Tan(E; x ) can be
related to the behaviour of E close to the point x.

Let B (x; r ) be the open ball in Rn with center x and radius r , and let
C(x; T; a) be the cone with center x, axis T|a k-dimensional subspace of
Rn |and amplitude ® = arcsin a, that is,

C(x; T; a) :=
©

x0 2 Rn : dist(x0 ¡ x; T ) · a jx0 ¡ xj
ª

:

For
� k -almost every x 2 E, the measure ofE \ B (x; r ) is asymptotically

equivalent, asr ! 0, to the measure of a °at disk of radiusr , that is,
� k ¡

E \ B (x; r )
¢

» ! k r k :

Moreover, the part of E contained in B (x; r ) is mostly located close to the
tangent plane Tan(E; x ), that is,

� k ¡
E \ B (x; r ) \ C(x; Tan(E; x ); a)

¢
» ! k r k for every a > 0.

When this condition holds, Tan(E; x ) is called the approximate tangent space
to E at x (see Figure 4).

T=Tan(E, x)
x

C(x, T, a)a

r
E

Fig. 4. A recti¯able set E close to a point x of approximate tangency. The part of E
contained in the ball B (x; r ) but not in the cone C(x; T; a) is not empty, but only small
in measure.

2.6. The area formula. - The area formula allows to compute the mea-
sure

� k (©(E)) of the image of a setE in Rk as the integral overE of a suitably
de¯ned Jacobian determinant of ©. When © is injective and takes values in
Rk , we recover the usual change of variable formula for multiple integrals.

We consider ¯rst the linear case. If L is a linear map from Rk to Rm with
m ¸ k, the volume ratio ½:=

� k (L (E))=
� k (E ) does not depend onE, and

agrees withj det(PL)j whereP is any linear isometry from the image ofL into
Rk , and det(PL) is the determinant of the k £ k matrix associated with PL.
The volume ratio ½can be computed using one of the following identities:

½=
p

det(L ¤L) =
q X

(det M )2 ; (6)
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whereL ¤ is the adjoint of L (thus L ¤L is a linear map fromRk into Rk ), and the
sum in the last term is taken over all k £ k minors M of the matrix associated
with L .

Let © : Rk ! Rm be a map of classC1 with m ¸ k, and E a set in Rk .
Then Z

©( E )

#(© ¡ 1(y) \ E ) d
� k (y) =

Z

E

J (x) d
� k (x) ; (7)

where #A stands for the number of elements ofA, and the JacobianJ is

J (x) :=
q

det
¡
r ©(x)¤ r ©(x)

¢
: (8)

Note that the left-hand side of (7) is
� k (©(E)) when © is injective.

Remark. - Formula (7) holds even if E is a k-recti¯able set in Rn . In this
case the gradientr ©(x) in (8) should be replaced by the tangential derivative
of © at x (viewed as a linear map from Tan(E; x ) into Rm ). No version of
formula (7) is available when E is not recti¯able.

3. Vectors, covectors, and di®erential forms

In this section we review some basic notions of multilinear algebra. I have
chosen a de¯nition ofk-vectors andk-covectors inRn , and of the corresponding
exterior products, that is quite convenient for computations, even though not as
satisfactory from the formal viewpoint. The main drawback is that it depends
on the choice of a standard basis ofRn , and therefore cannot be used to de¯ne
forms (and currents) when the ambient space is a general manifold.

3.1. k-vectors and exterior product. - Let f e1; : : : ; en g be the stan-
dard basis ofRn . Given an integer k · n, I (n; k) is the set of all multi-indices
i = ( i 1; : : : ; i k ) with 1 · i 1 < i 2 < : : : < i k · n, and for every i 2 I (n; k) we
introduce the expression

ei = ei 1 ^ ei 2 ^ : : : ^ ei k :

A k-vector in Rn is any formal linear combination
P

®i ei with ®i 2 R for
every i 2 I (n; k). The space ofk-vectors is denoted by^ k (Rn ); in particular,
^ 1(Rn ) = Rn . For reasons of formal convenience, we set̂ 0(Rn ) := R and
^ k (Rn ) := f 0g for k > n .

We denote by j ¢ j the euclidean norm on^ k (Rn ).
The exterior product v ^ w 2 ^ k+ h (Rn ) is de¯ned for every v 2 ^ k (Rn )

and w 2 ^ h (Rn ), and is completely determined by the following properties:
a) associativity, b) linearity in both arguments, c) ei ^ ej = ¡ ej ^ ei for every
i 6= j and ei ^ ei = 0 for every i .
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3.2. Simple vectors and orientation. - A simple k-vector is any v in
^ k (Rn ) that can be written as a product of 1-vectors, that is,

v = v1 ^ v2 ^ : : : ^ vk :

It can be shown that v is null if and only if the vectors f vi g are linearly
dependent. If v is not null, then it is uniquely determined by the following
objects: a) the k-dimensional spaceM spanned byf vi g; b) the orientation of
M associated with the basisf vi g; c) the euclidean normjvj. In particular, M
does not depend on the choice of the vectorsvi . Note that jvj is equal to the
k-dimensional volume of the parallelogram spanned byf vi g.

Hence the mapv 7! M is a one-to-one correspondence between the class of
simple k-vectors with norm jvj = 1 and the Grassmann manifold of oriented
k-dimensional subspaces ofRn .

This remark paves the way to the following de¯nition: if S is ak-dimensional
surface of classC1 in Rn , possibly with boundary, an orientation of S is a
continuous map ¿S : S ! ^ k (Rn ) such that ¿S (x) is a simple k-vector with
norm 1 that spans Tan(S; x) for every x. To every orientation of S (if any exists)
is canonically associated the orientation of the boundary@Sthat satis¯es

¿S (x) = ´ (x) ^ ¿@S(x) for every x 2 @S, (9)

where ´ (x) is the inner normal to @Sat x.

3.3. k-covectors. - The standard basis of the dual ofRn is f dx1; : : : ; dxn g,
where dxi : Rn ! R is the linear functional that takes every x = ( x1; : : : ; xn )
into the i -th component x i . For every i 2 I (n; k) we set

dxi = dxi 1 ^ dxi 2 ^ : : : ^ dxi k ;

and the space^ k (Rn ) of k-covectorsconsists of all formal linear combinationsP
®i dxi . The exterior product of covectors is de¯ned as that for vectors. The

space^ k (Rn ) is dual to ^ k (Rn ) via the duality pairing h ; i de¯ned by the
relations hdxi ; ej i := ±ij (that is, 1 if i = j and 0 otherwise).

3.4. Differential forms and Stokes theorem. - A di®erential form
of order k on Rn is a map ! : Rn ! ^ k (Rn ). Using the canonical basis of
^ k (Rn ), we can write ! as

! (x) =
X

i 2 I (n;k )

! i (x) dxi

where the coordinates! i are real functions onRn . The exterior derivative of
a k-form ! of classC1 is the (k + 1)-form

d! (x) :=
X

i 2 I (n;k )

d! i (x) ^ dxi ;
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where, for every scalar functionf , df is the 1-form

df (x) :=
nX

i =1

@f
@xi

(x) dxi :

If S is a k-dimensional oriented surface, the integral of ak-form ! on S is
naturally de¯ned by

Z

S

! :=
Z

S

h! (x); ¿S (x)i d
� k (x) :

Stokes theorem states that for every (k ¡ 1)-form ! of classC1 there holds
Z

@S

! =
Z

S

d! (10)

provided that @Sis endowed with the orientation ¿@S that satis¯es (9).

4. Currents

The de¯nition of k-dimensional currents closely resembles that of distri-
butions: they are the dual of smooth k-forms with compact support. Since
every oriented k-dimensional surface de¯nes by integration a linear functional
on forms, currents can be regarded as generalizedoriented surfaces. As every
distribution admits a derivative, so every current admits a boundary. Indeed,
many other basic notions of homology theory can be naturally extended to
currents|this was actually one of the motivation behind the introduction of
currents, due to G. de Rham.

For the applications to variational problems, smaller classes of currents are
usually considered; the most relevant to the Plateau problem is that of integral
currents. Note that the de¯nitions of the spaces of normal, recti¯able and
integral currents and the symbols used to denote them vary, sometimes more
than slightly, depending on the author.

4.1. Currents, boundary and mass. - Let n; k be integers with n ¸ k.
The space ofk-dimensional currents on Rn , denoted by � k (Rn ), is the dual of
the space �

k (Rn ) of smooth k-forms with compact support in Rn . For k ¸ 1,
the boundary of a k-current T is the (k ¡ 1)-current @Tde¯ned by

h@T; ! i := hT; d! i for every ! 2 �

k ¡ 1(Rn ), (11)

while the boundary of a 0-current is set equal to 0. Themass of T is the
number

M(T) := sup
©

hT; ! i : ! 2 �

k (Rn ); j! j · 1
ª

: (12)
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Fundamental examples ofk-currents are oriented k-dimensional surfaces:
to each oriented surfaceS of class C1 is canonically associated the current
hT; d! i :=

R
S ! (in fact, S is completely determined by the action on forms,

that is, by the associated current). By Stokes theorem, the boundary ofT is
the current associated with the boundary of S, thus the notion of boundary
for currents is compatible with the classical one for oriented surfaces. A simple
computation shows that M(T) =

� k (S), and therefore the mass provides a
natural extension of the notion of k-dimensional volume to k-currents.

Remarks. - (i) Not all k-currents look like k-dimensional surfaces. For ex-
ample, everyk-vector¯eld v : Rn ! ^ k (Rn ), de¯nes by duality the k-current

hT; ! i :=
Z

h! (x); v(x)i d
� n (x) :

The mass of T is
R

jvj d
� n , and the boundary is represented by a similar

integral formula involving the partial derivatives of v (in particular, for 1-
vector¯elds, the boundary is the 0-current associated with the divergence of
v). Note that the dimension of such T is k becausek-vector¯elds act on k-
forms, and there is no relation with the dimension of the support ofT, which
is n.

(ii) To be precise, �

k (Rn ) is a locally convex topological vector-space, and
� k (Rn ) is its topological dual. As such, � k (Rn ) is endowed with a dual (or
weak*) topology. We say that a sequence ofk-currents (Tj ) converge to T if
they converge in the dual topology, that is,

hTj ; ! i ! h T; ! i for every ! 2 �

k (Rn ). (13)

Recalling the de¯nition of mass, it is easy to show that it is lower semicontin-
uous with respect the dual topology, and in particular

lim inf M(Tj ) ¸ M(T) : (14)

4.2. Currents with finite mass. - By de¯nition, a k-current T with
¯nite mass is a linear functional on k-forms which is bounded with respect to
the supremum norm, and by Riesz theorem it can be represented as a bounded
measure with values in^ k (Rn ). In other words, there exist a ¯nite positive
measure¹ on Rn and a density function ¿ : Rn ! ^ k (Rn ) such that j¿(x)j = 1
for every x and

hT; ! i =
Z

h! (x); ¿(x)i d¹ (x) :

The fact that currents are the dual of a separable space yields the following
compactness result: A sequence ofk-currents (Tj ) with uniformly bounded
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massesM(Tj ) admits a subsequence that converges to a current with ¯nite
mass.

4.3. Normal currents. - A k-current T is called normal if both T and
@Thave ¯nite mass. The compactness result stated in the previous paragraph
implies the following compactness theorem for normal currents: A sequence
of normal currents (Tj ) with M(Tj ) and M(@Tj ) uniformly bounded admits a
subsequence that converges to a normal current.

4.4. Rectifiable currents. - A k-current T is called recti¯able if it can
represented as

hT; ! i =
Z

E

h! (x); ¿(x)i µ(x) d
� k (x)

where E is a k-recti¯able set E , ¿ is an orientation of E |that is, ¿(x) is a
simple unit k-vector that spans Tan(E; x ) for

� k -almost every x 2 E |and µ
is a real function such that

R
E jµjd

� k is ¯nite, called multiplicity . Such T is
denoted by T = [ E; ¿; µ]. In particular, a recti¯able 0-current can be written
as hT; ! i =

P
µi ! (x i ) where E = f x i g is a countable set inRn and f µi g is a

sequence of real numbers with
P

jµi j < + 1 .

4.5. Integral currents. - If T is a recti¯able current and the multiplicity
µ takes integral values,T is called aninteger multiplicity recti¯able current . If
both T and @Tare integer multiplicity recti¯able currents, then T is an integral
current.

The ¯rst non-trivial result is the boundary recti¯ability theorem: If T is
an integer multiplicity recti¯able current and @Thas ¯nite mass, then @Tis
an integer multiplicity recti¯able current, too, and therefore T is an integral
current.

The second fundamental result is thecompactness theorem for integral cur-
rents: A sequence of integral currents (Tj ) with M(Tj ) and M(@Tj ) uniformly
bounded admits a subsequence that converges to an integral current.

Remarks. - (i) The point of the compactness theorem for integral currents is
not the existence of a converging subsequence|that being already established
by the compactness theorem for normal currents|but the fact that the limit
is an integral current. In fact, this result is often referred to as a \closure
theorem" rather than a \compactness theorem".

(ii) The following observations may clarify the role of assumptions in the
compactness theorem. a) A sequence of integral currents (Tj ) with M(Tj )
uniformly bounded|but not M(@Tj )|may converge to any current with ¯nite
mass, not necessarily a recti¯able one. b) A sequence of recti¯able currents
(Tj ) with recti¯able boundaries and M(Tj ), M(@Tj ) uniformly bounded may
converge to any normal current, not necessarily a recti¯able one. Examples of
both situations are described in Figure 5.
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1/j

Tj :=[Ej, e, 1/j]

W

1/j

T := e ×1W

length=1/j2

Ej

Tj :=[Ej, e, 1]' '

Ej'
e

Fig. 5. T is the normal 1-current on R2 associated with the vector¯eld equal to the unit
vector e on the unit square ­, and equal to 0 outside. Tj are the recti¯able currents
associated with the setsE j (middle) and the constant multiplicity 1 =j , and then M(Tj ) =
1, M(@Tj ) = 2. T0

j are the integral currents associated with the setsE 0
j (left) and the

constant multiplicity 1, and then M(T0
j ) = 1, M(@T0j ) = 2 j 2. Both ( Tj ) and (T0

j ) converge
to T.

4.6. Application to the Plateau problem. - The compactness result
for integral currents implies the existence of currents with minimal mass: If ¡
is the boundary of an integral k-current in Rn , 1 · k · n, then there exists a
current T of minimal mass among those that satisfy@T= ¡.

The proof of this existence result is a typical example of the direct method:
Let m be the in¯mum of M(T) among all integral currents with boundary ¡,
and let (Tj ) be a minimizing sequence (that is, a sequence of integral currents
with boundary ¡ such that M(Tj ) converges tom). Since M(Tj ) is bounded
and M(@Tj ) = M(¡) is constant, we can apply the compactness theorem for
integral currents and extract a subsequence of (Tj ) that converges to an integral
current T. By the continuity of the boundary operator, @T= lim @Tj = ¡, and
by the semicontinuity of the mass M(T) · lim M(Tj ) = m (cf. (14)). Thus T
is the desired minimal current.

Remarks. - (i) Every integral ( k ¡ 1)-current ¡ with null boundary and
compact support in Rn is the boundary of an integral current, and therefore is
an admissible datum for the previous existence result.

(ii) A mass-minimizing integral current T is more regular than a general
integral current. For k = n ¡ 1, there exists a closed singular setS with
dimH (S) · k¡ 7 such that T agrees with a smooth surface in the complement of
S and of the support of the boundary. In particular T is smooth away from the
boundary for n · 7. For generalk it can only be proved that dimH (S) · k ¡ 2
Both results are optimal: In R4 £ R4, the minimal 7-current with boundary
¡ := fj xj = jyj = 1g|a product of two 3-spheres|is the cone T := fj xj =
jyj · 1g, and is singular at the origin. In R2 £ R2, the minimal 2-current with
boundary ¡ := f x = 0 ; jyj = 1g [ f y = 0 ; jxj = 1g|a union of two disjoint
circles|is the the union of the disks f x = 0 ; jyj · 1g [ f y = 0 ; jxj · 1g, and is
singular at the origin.

(iii) In certain cases, the mass-minimizing current T may not agree with
the solution of the Plateau problem suggested by intuition. The ¯rst reason
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is that currents do not include non-orientable surfaces, which sometimes may
be more convenient (Figure 6). Another reason is that the mass of an integral
current T associated with ak-recti¯able set E does not agree with the measure

� k (E )|called size of T|because multiplicity must be taken into account,
and for certain ¡ the mass-minimizing current may be not size-minimizing
(Figure 7). Unfortunately, proving the existence of size-minimizing currents is
much more complicated, due to lack of suitable compactness theorems.

G S

S'

Fig. 6. The surface with minimal area spanning the (oriented) curve ¡ is the MÄobius strip
§. However, § is not orientable, and cannot be viewed as a current. The mass-minimizing
current with boundary ¡ is § 0.

-1

-1 +1

+1

G T T '

Fig. 7. The boundary ¡ is a 0-current associated with four oriented points. The size
(length) of T is smaller than that of T0. However, @T= ¡ implies that the multiplicity of
T must be 2 on the central segment and 1 on the others; thus the mass ofT is larger than
its size. The size-minimizing current with boundary ¡ is T, while the mass-minimizing
one isT0.

(iv) For k = 2, the classical approach to the Plateau problem consists in
parametrizing surfaces inRn by maps f from a given 2-dimensional domainD
into Rn , and looking for minimizers of the area functional

Z

D

p
det(r f ¤r f )

(recall the area formula, x2.6) under the constraint f (@D) = ¡. In this frame-
work, the choice of the domainD prescribes the topological type of admissible
surfaces, and therefore the minimizer may di®er substantially from the mass-
minimizing current with boundary ¡ (Figure 8).

G S S'

Fig. 8. The surface § minimizes the area among surfaces parametrized by the disc with
boundary ¡. The mass-minimizing current § 0 can only be parametrized by a disc with a
handle. Note that § is a singular surface, while §0 is not.
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(v) For some modeling problems, for instance those related to soap ¯lms
and soap bubbles, currents do not provide the right framework (Figure 9).
A possible alternative are integral varifolds (cf. [1]). However, it should be
pointed out that this framework does not allow for \easy" application of the
direct method, and the existence of minimal varifolds is in general quite di±cult
to prove.

G S S'

Fig. 9. Two possible soap ¯lms spanning the wire ¡: unlike §, § 0 cannot be viewed as a
current with multiplicity 1 and boundary ¡.

4.7. Miscellaneous result and useful tools. - (i) An important is-
sue, related to the use of currents for solving variational problems, is to which
extent integral currents can be approximated by regular objects. For many
reasons, the \right" regular class to consider are not smooth surface, but inte-
gral polyhedral currents, that is, linear combinations with integral coe±cients
of oriented simplexes. The followingapproximation theorem holds: For every
integral current T in Rn there exists a sequence of integral polyhedral currents
(Tj ) such that

Tj ! T; @Tj ! @T;M(Tj ) ! M(T); M(@Tj ) ! M(@T) :

The proof is based on a quite useful tool, calledpolyhedral deformation.
(ii) Many geometric operations for surfaces have an equivalent for currents.

For instance, it is possible to de¯ne the image of a current inRn via a smooth
proper map f : Rn ! Rm . Indeed, to every k-form ! on Rm is canonically
associated ak-form f # ! on Rn , called pull-back of ! according to f . The
adjoint of the pull-back is an operator, called push-forward, that takes every
k-current T in Rn into a k-current f # T in Rm . If T is the recti¯able current
associated with a recti¯able setE and a multiplicity µ, the push-forward f # T
is the recti¯able current associated with f (E )|and a multiplicity µ0(y) which
is computed by adding up with the right sign all µ(x) with x 2 f ¡ 1(y). As
one might expect, the boundary of the push-forward is the push-forward of the
boundary.

(iii) In general, it is not possible to give a meaning to the intersection of
two currents, and not even of a current and a smooth surface. However, it is
possible to de¯ne the intersection of a normalk-current T and a level surface
f ¡ 1(y) of a smooth map f : Rn ! Rh (with k · h · n) for almost every y,
resulting in a current Ty with the expected dimensionh ¡ k. This operation is
called slicing.
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(iv) When working with currents, a quite useful notion is that of °at norm :

F(T) := inf
©

M(R) + M(S) : T = R + @S
ª

where T and R are k-currents, and S is a (k + 1)-current. The relevance of
this notion lies in the fact that a sequence (Tj ) that converges with respect
to the °at norm converges also in the dual topology, and the converse holds
if the massesM(Tj ) and M(@Tj ) are uniformly bounded. Hence the °at norm
metrizes the dual topology of currents (at least on sets of currents where the
mass and the mass of the boundary are bounded).

Since F(T) can be explicitly estimated from above, it can be quite useful
in proving that a sequence of currents converges to a certain limit. Finally,
the °at norm gives a (geometrically signi¯cant) measure of how far apart two
currents are: for instance, given the 0-currents±x and ±y (the Dirac masses at
x and y, respectively), then F(±x ¡ ±y ) is exactly the distance betweenx and y.
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